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SORTING IN ONE ROUND 

B Y 

BI~LA BOLLOB,~S A N D  M O S H E  R O S E N F E L D  

ABSTRACT 

Given an ordered set of n e lements  whose order is not known to us, it is shown 
that by making slightly more  than c n  3~ s imultaneous comparisons almost all 
comparisons can be deduced by direct implications. It is also shown that this 
result is essentially best possible, and that if n is large, almost any choice of c n  ~2 

comparisons will yield almost all comparisons by direct implications. 

The paper  is motivated by a one round sorting problem due to Pavol Hell [6]. 

Suppose we are given n objects in a linear order unknown to us. We choose q 

questions, that is pairs, whose order we wish to be revealed. Suppose no mat ter  

what answers we get, we can deduce at least q + g comparisons. Then g is our 

gain: we deduce more comparisons than we are given. Pavol Hell asked for a 

distribution of the questions which maximizes our guaranteed gain. Another  aim 

could be to maximize g/q or to minimize q under  the condition that q + g = 

2~-n2+ o(n2), that is we learn almost all the answers. It is also often sensible to 

restrict our gain to direct implications: to comparisons we can deduce f rom at 

most two answers. Then the main problem is to find as few questions as possible 

so that we learn almost all comparisons as direct implications of the answers, no 

mat ter  what the hidden order is. In this paper  we shall concentrate on some 

variants of this last problem. 

Though we are pointing out the obvious, we remark  that the essence of the 

one round sorting problem is that the questions have to be distributed before any 

of the answers are obtained. It is clear that one needs at least log2(n !) questions 

to determine a linear order completely. It is almost equally obvious that with 

c log2(n !) questions one can determine the order. However ,  the questions have 

to be asked in several rounds and at each round the questions are distributed 
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according to the answers received up to that point. Our problem bears a 

superficial resemblance to the restricted sorting problem discussed by several 

authors, including Batcher [1], Floyd and Knuth [5], Van Voorhis [8] and Knuth 

[7, p. 226-229]. However,  in the restricted sorting problem the objects we 

compare may be interchanged so the subsequent questions do depend on the 

order. Note also that the complete order cannot be determined in one round 

unless we ask all (~) questions. Thus we shall never require to learn more than 

almost all of the comparisons. 

Before embarking on the essential part of the paper, we note that H~iggkvist 

and Hell have shown independently that by asking 2nSJ31ogn appropriate 

questions, we may be guaranteed a gain of more than cn z pairs. We shall show 

that considerably more is true, namely that somewhat more than cn 3/2 questions 

can guarantee that almost every pair will be a direct implication. We shall show 

also that g/q can be as large as cn i~2. Our paper concludes with some results 

concerning k-step implications. 

Given a graph G = (V ,E) ,  let /~ be an orientation of the edges. This 

orientation is said to be consistent or acyclic if the oriented graph (~ = (V,/~) 

contains no directed cycle. Equivalently, /~ is an acyclic orientation if there.is a 

linear order < on V such that xy ~ E implies x < y. We say that (x, z)  E V t2~ is 

a direct implication in an orientation/~ if there is a y ~ V for which xy, yz E E. 

Let p be a prime (or a prime power) and put n = p2+ p + 1. The following 

graph Go was constructed by Erd6s and R6nyi [4] (see also [2, p. 314]). The 

vertex set is the set of points of the projective plane P G ( 2 , p )  over the field of 

order  p and a point (a, b, c) is joined to all the points on its polar with respect to 

the conic x 2 + y 2 + z 2 = 0 .  Thus (a ,b ,c)  and (a, fl, y )  are joined iff aa +bfl + 

cy = O. 

THEOREM 1. The graph Go has n = p 2 + p + l  vertices, ½ p ( p + l ) 2 - ½ n  3/2 

edges and every orientation of Go contains at least ~0n2(1 + o(1)) direct implica- 

tions. 

PROOF. The first two assertions are trivial. Furthermore,  clearly every vertex 

has degree p or p + 1 and the graph contains no quadrilateral. (In fact, this is 

exactly the most interesting property of this graph, see [2, p. 314].) 

We shall estimate the number of direct implications by studying the pentagons 

(5-cycles) in this graph. Let x2x3 ~ E(Go). Let x4 be a neighbour of x3 but not of 

x2. We have at least p - 2 choices for x4. Now pick a neighbour xl of x2 which is 

not a neighbour of x3 or x4. There are at least p - 3 choices for xl. Then xl and xa 

must have exactly one common neighbour, which has to be distinct from x2 and 
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x3. In this way we have constructed a pentagon xlx2" • • xs. Since in constructing 

this pentagon we started with an arbitrary edge, we see that G has at least 

11 ½ ~ ~ p (p  + 1)2(p _ 2)(p _ 3 ) _  p5 

pentagons. 

Now let us estimate the number  of pentagons in which a given pair ab E V t2) 

can appear  as a diagonal xlx3 of a pentagon XlXE•3X4X5. Since x~ and x3 have at 

most one common neighbour, we have at most one choice for x2. Then x4 can be 

chosen in at most p - 1 ways, and once again we have at most one choice for xs. 

Hence  at most p - 1 pentagons contain ab as a diagonal. 

Now it is easily checked that every orientation of a pentagon gives at least one 

direct implication. Consequently no mat ter  how we orient Go, we obtain at least 

l p ' p - ~ ( l  + o ( 1 ) ) = l p  "(l + o ( 1 ) ) = l  n2(l + o(1)) 

direct implications, as claimed. []  

By a more careful and also more  cumbersome argument  the constant ~ could 

be improved somewhat.  However ,  as we shall see later, it cannot be improved to 

½. Now we come to the main result of the paper.  

THEOREM 2. Given e > 0 there is a constant C(e ) such that for every n there 

exists a graph of order n having at most C(e )n 3/2 edges whose every consistent 

orientation contains at least ( ~ ) -  en 2 direct implications. 

In fact we shall prove considerably more,  namely that almost every (a.e.) 

graph in a certain probabili ty space ~(n,  P(edge)  = p)  has the required proper-  

ties, provided n is sufficiently large. Given 0 < p < 1 and a natural  number  n, we 

write ~(n,  P(edge)  = p)  for the discrete probabili ty space consisting of all graphs 

on a fixed set V of n labelled vertices in which the probabili ty of a fixed graph 

Go with m edges is 

P({Go}) = p m (1 - p)(~)-'. 

Equivalently: the edges are selected independently and with probabili ty p. (See 

[3, ch. VII] for this model  and for basic results on random graphs.) Our  proof  is 

based on the following two lemmas. Since the assertions of these lemmas 

concern a.e. graph, in the proofs we may and will assume that n is sufficiently 

large. 

LEMMA 3. Let a,/3, ~l and C be positive constants with ~ < 1. Put p = Cn ~-1 
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Then a.e. G E ~(n, P(edge) = p)  is such that for every W C V ( G ) ,  I W I  = m >= 

an  the set 

zw= x~V-w:lr(x)nWl<=gpm 

has at most  ~n elements. 

PROOF. Let W E V ( G ) , I W I = m = > a n  a n d x E V - W b e f i x e d .  A w e a k  

form of the De Moivre-Laplace theorem implies that for some constant 3, > 0 

we have 

P ( x  E Z w )  = po <= e - " ' .  

Hence, rather crudely, 

P([ Zw I--> ~n)<=2"p~o"<--2"e -°" . . . .  ---~ 0, 

proving the lemma. []  

LEMMA 4. Let  y, 6, T I and C be positive constants satisfying 77 < 1 and 

e c" > e l& P u t p  = Cn ~-~. Then a.e. graph G E ~(n, P(edge) = p)  is such that for 

every U C V(G),  I UI = u = ),n ~-~ the set 

Tu = ( x  E V -  U : F ( x ) O  U = O }  

has at most  6n elements. 

PROOF. For fixed U a n d x E V - U  we have 

P ( x  E Tu) = (1 - p)" <- e -pu <= e-CL 

Hence for a fixed set U: 

P(I Tu ] >__ 6n ) <= e-C,"<= e-C,~,. 

Since there are less than n"'  " choices for U, 

P(I Tv  I >= 6n for some U) _-< n"'-" exp{ - 6n (Cy - log (e/6))}.  

The conditions on the constants imply that this tends to 0 so the lemma follows. 
[]  

PROOF OF THEOREM 2. Choose two constant C ( e )  and C satisfying C ( e )  > 

C > ( 9 1 o g ( 3 e / e ) / e ) ~ .  Put p = C n  -11:. We shall show that a.e. G E  

C~(n, P ( edg e )=  p)  has the required property. 
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Write 7/ =½, k = [4/e l ,  a = 1/(2k), /3 = e/(8k),  y = C/(2k)  and 6 = e/3. 

Then a.e. graph satisfies the conclusions of Lemmas 3 and 4 and has at most 

C(e)n  3/2 edges. We shall show that every such graph Go will do for the theorem. 

Having been given an arbitrary consistent orientation of Go, let us relabel the 

vertices xl, x2 , "  ", x, of Go in such a way that every edge x~xi, i >j,  is oriented 

from i to j. Partition V(Go) into k consecutive blocks of roughly equal size: 

V ( G ) =  U~ w~, max w~ + 1 = rain W~+~ and [n/k] <--I W~[ <= [n/k] .  

Pick a block W~, i->_ 3, and write W = W~ 1. Then by Lemma 3 we have 

I Zw I <-/3n so 

I z w n  w, I_-</3n. 

Each x E W, - Zw is joined to a set Ux of at least ~p[ W[ => yn "2 vertices in W. 

By Lemma 4 at most 6n vertices of Go are not joined to some vertices in Ux. 

Hence for this x there are at most 2In~k] + ,3n < den vertices y E I,.Ji=l Wj such 

that xy is not a direct implication. Consequently there are at most /3n2+ 

In~k] ~en < en2/k edges of the form xjxk, xi E W~, k <j ,  for which xixk is not a 

direct implication. As there are k blocks W~, the proof is complete. []  

From what we have said so far it is not clear that Theorems 1 and 2 cannot be 

improved greatly. We do not know that there is no graph of size O(n  3/2) whose 

every consistent orientation misses only 0 (n 2) direct implications. Now we show 

not only that this is the case, but also that the dependence of C(e)  on e in 

Theorem 2 is essentially best possible. The factor (log (1/e))l/z is very likely to be 

an error term due to the probabilistic method. 

THEOREM 5. (i) Every graph G of order n and size m ~2-5/2n3/2 has a 

consistent orientation with at most ( ~ ) -  {6n 2 direct implications. 

(ii) Let C and e be positive constants satisfying e < 2-14C -2. Then if n is 

sufficiently large, every graph G of order n and size m <= Cn 3/2 has a consistent 

orientation with at most (½-e)n  2 direct implications. 

PROOF. (i) Let xl, x2 , "  . ,x ,  be the vertices of G such that d ( x , ) =  < d(x,+~). 

Then d(x,) = 2m/([n/2] + 2) for i _-< [n/2] - 1. Orient each edge x,x, of G from i 

to j if i < j. Let us say that a direct implication x,x----'k belongs to xj if i < j < k and 

x~xj, xjxk E E(G) .  Then at most d(xj)2/4 direct implications belong to xv Conse- 

quently the number of direct implications in {x~, x z , " - ,  xt.m} is at most 

t"~-'d (xi)Z/4 <= (In~2] - 2) (m/(In/2J  + 2))214 
/=2 
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(ii) For simplicity we shall omit the integrality signs - -  this clearly does not 

affect the argument. 

Put 8 = 25e. Let W be an arbitrary set of n/2 vertices. Since G [ W] has at most 

C n  3/2 edges, there is a subset Z C W with 8n vertices and at most 

(28)2Cn 3,2 = (4C8 ,/2) (Sn)3,2 =< 2-,,~(8n)3,2 

edges. Hence there are disjoint subsets Z~, Z2, - - . ,Zk,  k = 1t(28), I Z, I = 8n, 

such that each G [ Z  ] has fewer than 2-5/2(~n)3/2 edges. Order the vertices of G so 

that each Z~ is a block, that is no vertex x ~ Z~ is both preceded and succeeded 

by vertices of Zi. Then no pair yz,  y, z ~ Z can be implied by edges not in Z~. 

Consequently by part (i) in each G[ZI]  at least ~(Sn)  2 implications are missing. 

Hence in G altogether at least 

1 ~6(~n)2=2_58n 2 en 2 
28 

direct implications are missing. []  

Note that a head-on attack on (i) or (ii) making use of large empty subgraphs 

of G gives only O(n  3/2) missing implications since by Tunin 's  theorem O(n 3/2) 
edges guarantee only an empty graph of order O(n~/2). 

Slightly more elaborate and more tedious versions of the proofs above give us 

analogous results for k-step implications. We leave the details to the reader. A 

k -step implication in an oriented graph is a pair of vertices (x, y ) for which there 

is a directed path of length k from x to y. Thus a direct implication is exactly a 

2-step implication. 

THEOREM 6. (i) Given  e > 0  there is a constant C > O  such that with p =  

Cn ~/k-~ a.e. graph G E ~ 3 ( n , P ( e d g e ) = p )  contains at least ( ~ ) - e n  2 k-s tep  

implications in every consistent orientation o f  G. In  particular, i f  C ( n  )--~ ~ then 

there is a graph of  order n and size at most  C ( n ) n  1÷1/k whose every consistent 

orientation contains (~ ) + o (n  2) k -s tep  implications. 

(ii) Given C > 0 there is an e > 0 such that if  n is sufficiently large then every 

graph of  order n and size m <= Cn i.i/k has a consistent orientation with at most  

(~ - e )n 2 k -s tep  implications. [] 
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